Cantor–Bernstein Theorem for Pseudo-BCK-Algebras

Jan Kühr

Received: 29 November 2006 / Accepted: 8 June 2007 / Published online: 25 July 2007 © Springer Science+Business Media, LLC 2007

Abstract We prove that if *A* and *B* are orthogonally *σ*-complete commutative pseudo-BCK-algebras such that *A* is isomorphic to a direct factor in *B*, and also *B* is isomorphic to a direct factor in *A*, then *A* and *B* are isomorphic. As a consequence we obtain previously known results for MV-algebras (by De Simone, Mundici and Navara), pseudo-MV-algebras (by Jakubík) and lattice-ordered groups (again by Jakubík).

Keywords · Commutative pseudo-BCK-algebra · Orthogonal *σ*-completeness · Direct factor · Cantor–Bernstein theorem

1 Introduction and the main result

A *pseudo-BCK-algebra* [[5\]](#page-10-0) is a structure $(A, \leq, \oslash, \odot, 0)$ where (A, \leq) is a poset with a least element 0, and \emptyset , \emptyset are binary operations on *A* such that, for all *x*, *y*, *z* \in *A*, we have

$$
(z \oslash y) \oslash (z \oslash x) \leq x \oslash y, \qquad (z \oslash y) \oslash (z \oslash x) \leq x \oslash y, \tag{1.1}
$$

$$
x \oslash (x \odot y) \leq y, \qquad x \oslash (x \oslash y) \leq y,\tag{1.2}
$$

$$
x \leq y \quad \text{iff} \quad x \oslash y = 0 \quad \text{iff} \quad x \odot y = 0. \tag{1.3}
$$

We say that a pseudo-BCK-algebra $(A, \leq, \oslash, \odot, 0)$ is *commutative* if it satisfies the identities

$$
x \oslash (x \odot y) = y \oslash (y \odot x), \qquad x \oslash (x \oslash y) = y \oslash (y \oslash x). \tag{1.4}
$$

J. Kühr (\boxtimes)

Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: kuhr@inf.upol.cz

Supported by the Research and Development Council of the Czech Government, the research project MSM 6198959214.

It is not hard to show that the poset (A, \leq) then is a meet-semilattice in which the infimum $x \wedge y$ is given by $x \wedge y = x \otimes (x \otimes y) = x \otimes (x \otimes y)$. Further, a commutative pseudo-BCK-algebra $(A, \leq, \oslash, \oslash, 0)$ is called *orthogonally* σ -*complete* if every countable pairwise orthogonal subset $X \subseteq A$ (i.e., $x \wedge y = 0$ for all $x, y \in X, x \neq y$) has a supremum in A.

In the present paper we prove the following Cantor–Bernstein type theorem:

Theorem A *Let A and B be orthogonally σ -complete commutative pseudo-BCK-algebras and assume that*

A ≅ *B* × *C*₁ *and B* ≅ *A* × *C*₂

for some pseudo-BCK-algebras C_1 , C_2 . *Then* $A \cong B$.

If $(A, \vee, \wedge, ', 0, 1)$ is a boolean algebra then $(A, \leq, \oslash, \odot, 0)$, where $x \oslash y = x \oslash y :=$ $x \wedge y'$, is a commutative pseudo-BCK-algebra, and hence Theorem A is a generalization of the following known result by Sikorski and Tarski: *If A and B are σ -complete boolean* a lgebras such that $A \cong [0, b] \subseteq B$ and $B \cong [0, a] \subseteq A$ for some $a \in A$, $b \in B$, then $A \cong B$.

Since pseudo-MV-algebras and positive cones of ℓ -groups can be regarded as special cases of commutative pseudo-BCK-algebras (see Example [2.2](#page-3-0)), the theorem is applicable to MV-algebras and pseudo-MV-algebras as well as to ℓ -groups (in Sect. [5](#page-9-0) we obtain the main results from [[15](#page-10-0)], [\[10\]](#page-10-0) and [\[9](#page-10-0)] as easy consequences of Theorem A).

Other Cantor–Bernstein like theorems extending the aforementioned result for boolean algebras were proved in $[16]$ $[16]$ $[16]$ for orthomodular lattices, in [[11](#page-10-0)] for effect algebras and in [[1](#page-10-0)] for pseudo-effect algebras. These theorems, however, are incomparable with Theorem A, because roughly speaking the intersection of orthomodular lattices and (pseudo-)effect algebras with commutative pseudo-BCK-algebras are boolean algebras and (pseudo-)MValgebras, respectively. An abstract version for algebras that have an underlying bounded lattice order (satisfying certain additional conditions) can be found in [[3\]](#page-10-0). Likewise this result is incomparable with Theorem A since commutative pseudo-BCK-algebras in general are meet-semilattices without upper bound, and bounded commutative pseudo-BCK-algebras are equivalent to pseudo-MV-algebras (cf. Example [2.2](#page-3-0)(b)).

2 Pseudo-BCK-Algebras

Pseudo-BCK-algebras were introduced by Georgescu and Iorgulescu [\[5\]](#page-10-0) and generalize well-known BCK-algebras in the sense that if the binary operations \oslash and \oslash coincide then the resulting structure becomes a BCK-algebra. The definition we have used at the beginning is essentially the original one, but it is easily seen that pseudo-BCK-algebras can be treated as algebras $(A, \emptyset, \emptyset, 0)$ of type $\langle 2, 2, 0 \rangle$. Indeed, if $(A, \leq, \emptyset, \emptyset, 0)$ is pseudo-BCK-algebra then the algebra $(A, \emptyset, \emptyset, 0)$ satisfies the following identities and quasi-identity:

$$
[(z \oslash y) \oslash (z \oslash x)] \oslash (x \oslash y) = 0,
$$
\n(2.1)

$$
[(z \otimes y) \oslash (z \otimes x)] \oslash (x \otimes y) = 0,
$$
\n(2.2)

$$
x \oslash 0 = x,\tag{2.3}
$$

$$
x \otimes 0 = x,\tag{2.4}
$$

 $0 \oslash x = 0,$ (2.5)

$$
x \oslash y = 0 \quad & y \oslash x = 0 \quad \Rightarrow \quad x = y,\tag{2.6}
$$

and on the other hand, on every algebra $(A, \emptyset, \emptyset, 0)$ satisfying $(2.1-2.6)$ one can define a partial order \leq by setting $x \leq y$ iff $x \oslash y = 0$ (which is equivalent to $x \oslash y = 0$) so that $(A, \leq, \heartsuit, \odot, 0)$ is a pseudo-BCK-algebra.

Accordingly, by a pseudo-BCK-algebra we shall mean an algebra $(A, \emptyset, \emptyset, 0)$ that fulfills $(2.1 - 2.6)$ $(2.1 - 2.6)$ $(2.1 - 2.6)$ $(2.1 - 2.6)$. A *bounded* pseudo-BCK-algebra is an algebra $(A, \emptyset, \emptyset, 0, 1)$, where $(A, \emptyset, \mathbb{Q}, 0)$ is a pseudo-BCK-algebra with a greatest element 1.

Since BCK-algebras coincide with those pseudo-BCK-algebras for which $\oslash = \oslash$, and BCK-algebras are not closed under homomorphic images, it follows that the class of all pseudo-BCK-algebras is a proper quasi-variety.

We have already mentioned that every boolean algebra can be made into a bounded commutative (pseudo-)BCK-algebra. Moreover, it is known that an arbitrary poset (P, \leqslant) with least element 0 becomes a (pseudo-)BCK-algebra if we define $x \oslash y = x \odot y := 0$ if $x \leq y$, and $x \oslash y = x \bigcirc y := x$ otherwise.

In general, pseudo-BCK-algebras arise as subreducts of dually integral dually residuated partially ordered monoids:

Example 2.1 A *dually integral dually residuated partially ordered monoid* (*po-monoid* for short) is a structure $(M, \leq, \oplus, \oslash, 0)$ where (M, \leq) is a partially ordered set, $(M, \oplus, 0)$ is a monoid whose identity 0 is the least element of (M, \leqslant) , and

$$
a \oplus b \geq c
$$
 iff $a \geq c \oslash b$ iff $b \geq c \oslash a$

for all $a, b, c \in M$. A straightforward verification yields that $(M, \oslash, \odot, 0)$ is a pseudo-BCK-algebra. Conversely, by [[12](#page-10-0)], every pseudo-BCK-algebra is obtained as a subalgebra of the reduct $(M, \emptyset, \mathbb{S}, 0)$ of a suitable dually integral dually residuated po-monoid (M, \leq, \leq) \oplus , \oslash , \oslash , 0).

In addition to $(1.1 - 1.3)$ $(1.1 - 1.3)$ $(1.1 - 1.3)$ $(1.1 - 1.3)$ and $(2.1 - 2.6)$ $(2.1 - 2.6)$ $(2.1 - 2.6)$, pseudo-BCK-algebras satisfy the following easily derivable properties (see [\[5\]](#page-10-0)):

- $x \oslash x = x \oslash x = 0,$ $0 \oslash x = 0 \oslash x = 0,$ (2.7)
- $x \leq y \implies x \oslash z \leq y \oslash z \quad & x \oslash z \leq y \oslash z,$ (2.8)

$$
x \leq y \quad \Rightarrow \quad z \oslash y \leq z \oslash x \quad & \quad z \oslash y \leq z \oslash x,\tag{2.9}
$$

$$
(x \oslash y) \oslash z = (x \oslash z) \oslash y,\tag{2.10}
$$

- $x \oslash y \leq z$ iff $x \oslash z \leq$ $\leqslant y$, (2.11)
- $x \oslash y \leqslant x$, $x \oslash y \leqslant y$ $\leqslant x,$ (2.12)

$$
(x \oslash z) \oslash (y \oslash z) \leq x \oslash y, \qquad (x \oslash z) \oslash (y \oslash z) \leq x \oslash y, \tag{2.13}
$$

$$
x \oslash (x \oslash (x \oslash y)) = x \oslash y, \qquad x \oslash (x \oslash (x \oslash y)) = x \oslash y. \tag{2.14}
$$

Moreover, if $\bigwedge_{i \in I} y_i$ exists, then so does $\bigvee_{i \in I} (x \oslash y_i)$ and

$$
x \oslash \left(\bigwedge_{i \in I} y_i\right) = \bigvee_{i \in I} (x \oslash y_i),\tag{2.15}
$$

and the same holds for \Diamond ; in particular, if $x \land y$ exists then

$$
x \oslash (x \wedge y) = x \oslash y \quad \text{and} \quad x \oslash (x \wedge y) = x \oslash y. \tag{2.16}
$$

Since Theorem [A](#page-1-0) is concerned exclusively with commutative pseudo-BCK-algebras, we focus our attention on them. There are two especially relevant examples:

Example 2.2 (a) Let $(G, +, -, 0, \vee, \wedge)$ be an ℓ -group and $G^+ = \{x \in G : x \ge 0\}$ its positive cone. If we put

$$
x \oslash y := (x - y) \vee 0 \quad \text{and} \quad x \oslash y := (-y + x) \vee 0,
$$

then $(G^+, \Diamond, \Diamond, 0)$ is a commutative pseudo-BCK-algebra. (Note that $(G^+, \leq, +, \Diamond, \Diamond, 0)$ is a dually integral dually residuated po-monoid.) We emphasize that *not* all commutative pseudo-BCK-algebras arise in this way as subalgebras of $(G^+, \oslash, \odot, 0)$ (see [\[2](#page-10-0)]).

(b) A *pseudo-MV-algebra* $(M, \bigoplus, \neg, \neg, 0, 1)$ is a monoid $(M, \bigoplus, 0)$ endowed with a constant 1 and two supplementary unary operations satisfying the equations:

$$
x \oplus 1 = 1 = 1 \oplus x,
$$

\n
$$
1^{-} = 0 = 1^{\sim},
$$

\n
$$
(x^{-} \oplus y^{-})^{\sim} = (x^{\sim} \oplus y^{\sim})^{-},
$$

\n
$$
x \oplus (y \odot x^{\sim}) = y \oplus (x \odot y^{\sim}) = (y^{-} \odot x) \oplus y = (x^{-} \odot y) \oplus x,
$$

\n
$$
(x^{-} \oplus y) \odot x = y \odot (x \oplus y^{\sim}),
$$

\n
$$
x^{-\sim} = x,
$$

where the binary operation \odot is defined by $x \odot y = (x^- \oplus y^-)^{\sim}$. Pseudo-MV-algebras were established in [\[4\]](#page-10-0) and independently in [\[14\]](#page-10-0) as a non-commutative extension of MValgebras; indeed, if the monoid $(M, \oplus, 0)$ is commutative, then $\overline{}$ and \sim coincide and *(M,* ⊕, $^-$, 0, 1*)* is an MV-algebra.

Let $(M, \bigoplus, \neg, \neg, 0, 1)$ be a pseudo-MV-algebra and define

$$
x \oslash y := (y \oplus x^{\sim})^-
$$
 and $x \oslash y := (x^- \oplus y)^{\sim}$.

Then $(M, \emptyset, \mathbb{Q}, 0, 1)$ is a bounded commutative pseudo-BCK-algebra (and $(M, \leq, \oplus, \otimes, \mathbb{Z})$ \Diamond , 0) is a dually integral dually residuated po-monoid, where \leq denoted the natural order of *M* defined by $x \le y$ iff $x^- \oplus y = 1$). By [\[5](#page-10-0)], bounded commutative pseudo-BCK-algebras are even termwise equivalent to pseudo-MV-algebras; the equivalence is given by the stipulation

$$
x \oplus y := 1 \oslash [(1 \otimes x) \otimes y] = 1 \oslash [(1 \oslash y) \oslash x],
$$

$$
x^- := 1 \oslash x \& x^{\sim} := 1 \oslash x.
$$

Another important observation is that commutative pseudo-BCK-algebras form an equational class [[13](#page-10-0)]:

Lemma 2.3 *An algebra* $(A, \emptyset, \emptyset, 0)$ *of type* $\langle 2, 2, 0 \rangle$ *is a commutative pseudo-BCKalgebra if and only if it satisfies* [\(2.7\)](#page-2-0) *and* [\(2.10\)](#page-2-0) *together with the identities*

$$
x \oslash (x \oslash y) = y \oslash (y \oslash x) = x \oslash (x \oslash y) = y \oslash (y \oslash x).
$$

It is clear by (2.12) (2.12) (2.12) that every interval $[0, a]$ of any commutative pseudo-BCK-algebra is a bounded commutative pseudo-BCK-algebra, hence a pseudo-MV-algebra. More precisely, if we are given a commutative pseudo-BCK-algebra $(A, \emptyset, \emptyset, 0)$ and $0 < a \in A$, and define

$$
x \oplus_a y := a \oslash [(a \otimes x) \otimes y] = a \oslash [(a \oslash y) \oslash x],
$$

$$
x^{-a} := a \oslash x \& x^{\sim a} := a \otimes x,
$$

then $([0, a], \bigoplus_a, \neg a, \neg a, 0, a)$ is a pseudo-MV-algebra. Consequently, although (A, \leqslant) is a meet-semilattice that need not be a lattice, the segment $([0, a], \leqslant)$ is a distributive lattice in which, for all *x*, $y \in [0, a]$, the supremum $x \vee_a y$ is expressed by the formulae

$$
x \vee_a y = (x^{\sim_a} \wedge y^{\sim_a})^{-a} = a \oslash [(a \odot x) \odot (y \odot x)] = x \oplus_a (y \odot x)
$$

=
$$
(x^{-a} \wedge y^{-a})^{\sim_a} = a \oslash [(a \oslash x) \oslash (y \oslash x)] = (y \oslash x) \oplus_a x.
$$

Lemma 2.4 *Let* $(A, \emptyset, \emptyset, 0)$ *be a commutative pseudo-BCK-algebra. If the suprema indicated on the left-hand side exist*, *then also the suprema and infima on the right-hand side exist and the following equalities hold*:

(a) $x \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge y_i);$ (b) $(\bigvee_{i \in I} x_i) \oslash y = \bigvee_{i \in I} (x_i \oslash y)$, and the same for \oslash ; $f(c)$ $x \oslash (\bigvee_{i \in I} y_i) = \bigwedge_{i \in I} (x \oslash y_i)$, and the same for \oslash .

Proof First of all note that (a), (b) and (c) are valid in pseudo-MV-algebras. The idea is to calculate the respective joins and meets in a suitable pseudo-MV-algebra [0, a], $a \in A$.

(a) Put $a = \bigvee_{i \in I} y_i$. Since $x \wedge a \in [0, a]$ and $y_i \in [0, a]$ for all $i \in I$, we get $x \wedge \bigvee_{i \in I} y_i =$ $(x \wedge a) \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge a) \wedge y_i = \bigvee_{i \in I} x \wedge y_i.$

(b) With $a = \bigvee_{i \in I} x_i$ we have $(\bigvee_{i \in I} x_i) \oslash y = (\bigvee_{i \in I} x_i) \oslash (a \wedge y) = \bigvee_{i \in I} (x_i \oslash (a \wedge y))$ *y*)) = $\bigvee_{i \in I} ((x_i \oslash a) \vee (x_i \oslash y)) = \bigvee_{i \in I} (x_i \oslash y)$ as $x_i \oslash a = 0$.

(c) We can use the interval $[0, x]$ now. Applying the property (a) we get $x \oslash (\bigvee_{i \in I} y_i)$ $x \oslash (x \wedge \bigvee_{i \in I} y_i) = x \oslash (\bigvee_{i \in I} (x \wedge y_i)) = \bigwedge_{i \in I} (x \oslash (x \wedge y_i)) = \bigwedge_{i \in I} (x \oslash y_i).$

3 Deductive Systems and Direct Factors

Throughout this paragraph we restrict ourselves to commutative pseudo-BCK-algebras; for more information about deductive systems in general pseudo-BCK-algebras we refer to [\[6](#page-10-0)].

Let $(A, \emptyset, \emptyset, 0)$ be a commutative pseudo-BCK-algebra. We call $D \subseteq A$ a *deductive system* of *A* if

(i) $0 \in D$,

(ii) if $a \oslash b \in D$ and $b \in D$ then $a \in D$.

The second condition is equivalent to saying that if $a \otimes b \in D$ and $b \in D$ then $a \in D$. For every $X \subseteq A$, there is the smallest deductive system $D(X)$ containing X; namely, $D(\emptyset) = \{0\}$, and

$$
D(X) = \{a \in A : (\cdots (a \oslash x_1) \oslash \cdots) \oslash x_n = 0 \text{ for some } x_i \in X, n \in \mathbb{N}\}\
$$

for $X \neq \emptyset$.

We use $DS(A)$ to denote the set of all deductive systems of A . When ordered by inclusion, $DS(A)$ forms an algebraic distributive lattice in which infima agree with settheoretical intersections and, for every $\{X_i : i \in I\} \subseteq DS(A)$, the supremum in $DS(A)$ is $\bigvee_{i \in I} X_i = D(\bigcup_{i \in I} X_i)$. $i \in I$ $X_i = D(\bigcup_{i \in I} X_i)$.

The lattice $DS(A)$ is pseudocomplemented; for each $X \in DS(A)$,

$$
X^{\delta} = \{a \in A : a \wedge x = 0 \text{ for all } x \in X\}
$$

$$
= \{a \in A : x \oslash a = x \text{ for all } x \in X\}
$$

is the pseudocomplement of *X* in $DS(A)$. X^{δ} is called the *polar* of *X*.

Furthermore, we say that *J* ∈ DS*(A)* is a *compatible deductive system*, or an *ideal* of *A* if, for all $a, b \in A$, $a \oslash b \in J$ if and only if $a \oslash b \in J$. Equivalently, *J* is an ideal iff $a \oslash (a \oslash x) \in J$ and $a \oslash (a \oslash x) \in J$ for all $a \in A$ and $x \in J$. The set of all ideals is denoted by I*d(A)*; again, it is partially ordered by inclusion. The ideals of *A* correspond one-one to the congruences on *A*. That is, if $J \in \mathcal{I}d(A)$ then the relation Θ_J defined by

 $(a, b) \in \Theta_J$ iff $a \oslash b \in J$ and $b \oslash a \in J$

is a congruence on *A* such that $J = 0/\Theta_J = \{a \in A : (a, 0) \in \Theta_J\}$, and conversely, for any congruence Φ on *A*, its kernel $J = 0/\Phi$ is an ideal of *A* with $\Theta_J = \Phi$.

Let *A* be a commutative pseudo-BCK-algebra. It can be easily seen that if $\varphi: A \to A_1 \times$ A_2 is an isomorphism of *A* onto the direct product $A_1 \times A_2$ of commutative pseudo-BCKalgebras *A*₁ and *A*₂, then both $\varphi^{-1}(A_1 \times \{0\})$ and $\varphi^{-1}(\{0\} \times A_2)$ are ideals of *A*. Moreover, the polar of $\varphi^{-1}(A_1 \times \{0\})$ is precisely $\varphi^{-1}(\{0\} \times A_2)$, and vice versa.

We shall say that a deductive system $X \in DS(A)$ is a *direct factor* in *A* if $X = \varphi^{-1}(A_1 \times$ {0}*)* or $X = \varphi^{-1}(\{0\} \times A_2)$ for some direct product decomposition $\varphi: A \to A_1 \times A_2$.

In this case, also X^{δ} is a direct factor and *A* is isomorphic to the direct product $X \times X^{\delta}$; we write $A = X \oplus X^{\delta}$ and say that *A* is the *direct sum* of *X* and X^{δ} .

We now describe the direct factors in orthogonally σ -complete commutative pseudo-BCK-algebras:

Lemma 3.1 *Let A be an orthogonally σ -complete commutative pseudo-BCK-algebra*. *For any* $X \in DS(A)$, *the following are equivalent*:

- (a) *X is a direct factor*;
- (b) *every* $a \in A$ *can be written in the form* $a = x \vee y$ *, where* $x \in X$ *and* $y \in X^{\delta}$;
- (c) *for every* $a \in A$, *the set* $X_a = \{x \in X : x \leq a\}$ *has a greatest element.*

Proof (a) \Rightarrow (b). Let φ : *A* \rightarrow *A*₁ × *A*₂ be a direct product decomposition of *A* and assume that $X = \varphi^{-1}(A_1 \times \{0\})$. Then $X^{\delta} = \varphi^{-1}(\{0\} \times A_2)$. For every $a \in A$, if $\varphi(a) = (a_1, a_2)$ then $x = \varphi^{-1}(a_1, 0) \in X$ and $y = \varphi^{-1}(0, a_2) \in X^{\delta}$, hence $x \vee y$ exists in *A* (for *x*, *y* are orthogonal) and one readily sees that $\varphi(x \lor y) = \varphi(x) \lor \varphi(y) = (a_1, 0) \lor (0, a_2) = (a_1, a_2) =$ $\varphi(a)$, so $x \vee y = a$.

(a) \Rightarrow (c). With the above notation, it is obvious that $\varphi^{-1}(a_1, 0) \in X_a$. If *b* ∈ *X_a* then $(b_1, 0) = \varphi(b) \le \varphi(a) = (a_1, a_2)$, which yields $b = \varphi^{-1}(b_1, 0) \le \varphi^{-1}(a_1, 0)$. Therefore $\varphi^{-1}(a_1, 0)$ is the greatest element of $X_a = \{x \in X : x \leq a\}.$

(b) \Rightarrow (a). First we show the uniqueness of the expression *a* = *x* ∨ *y*, where *x* ∈ *X* and *y* ∈ *X*^δ. Suppose that *a* = *x'* ∨ *y'* for some *x'* ∈ *X*, *y'* ∈ *X*^δ. Then *x* = *x* ⊘ (*x* ∧ *y*) = *x* ⊘ *y* = $(x \lor y) \oslash y = (x' \lor y') \oslash y = (x' \oslash y) \lor (y' \oslash y) = (x' \oslash (x' \land y)) \lor (y' \oslash y) = x' \lor (y' \oslash y),$

thus $x \ge x'$. Analogously, $y = y' \vee (x' \oslash x)$, which along with $x \ge x'$ (i.e. $x' \oslash x = 0$) entails $y = y'$ and $x = x'$.

Consequently, the map ψ : $X \times X^{\delta} \to A$ defined by $\psi(x, y) = x \vee y$ is a bijection. For any $x, x' \in X$ and $y, y' \in X^{\delta}$, we have $\psi(x, y) \oslash \psi(x', y') = (x \vee y) \oslash (x' \vee y') = ((x \oslash x') \wedge (x \oslash y'))$ $(x \oslash y')) \vee ((y \oslash x') \wedge (y \oslash y')) = (x \wedge (x \oslash x')) \vee (y \wedge (y \oslash y')) = (x \oslash x') \vee (y \oslash y') = (x \$ $\psi((x, y) \oslash (x', y'))$, and similarly $\psi(x, y) \oslash \psi(x', y') = \psi((x, y) \oslash (x', y'))$. Thus ψ is an isomorphism. Therefore, $\varphi = \psi^{-1}$: $A \to X \times X^{\delta}$ is a direct product decomposition such that $\varphi^{-1}(X \times \{0\}) = X$ and $\varphi^{-1}(\{0\} \times X^{\delta}) = X^{\delta}$.

(c) \Rightarrow (b). Given *a* ∈ *A*, let *a*₁ be the greatest element of *X_a* and put *a*₂ = *a* ⊘ *a*₁. We h ave $((a \otimes (a_2 \otimes a_1)) \otimes a_1) \otimes a_1 = ((a \otimes a_1) \otimes (a_2 \otimes a_1)) \otimes a_1 = (a_2 \otimes (a_2 \otimes a_1)) \otimes a_1 =$ $(a_1 \wedge a_2) \oslash a_1 = 0$; since $a_1 \in X$, it follows that $a \oslash (a_2 \oslash a_1) \in X$. Hence $a \oslash (a_2 \oslash a_1) \leq a_1$, because $a \otimes (a_2 \otimes a_1)$ is less than or equal to a and belongs to X. On the other hand, $a \bigcirc (a_2 \bigcirc a_1) \geq a \bigcirc a_2 = a \bigcirc (a \bigcirc a_1) = a \wedge a_1 = a_1$, so $a \bigcirc (a_2 \bigcirc a_1) = a_1$. Consequently, $a_2 \oslash a_1 = (a_2 \oslash a_1) \land a = a \oslash (a \oslash (a_2 \oslash a_1)) = a \oslash a_1 = a_2$ whence $a_1 \land a_2 = a_2 \oslash (a_2 \oslash a_1)$ a_1 $= 0$.

Now, for any $x \in X$, $x \wedge a_2 \in X$ and $x \wedge a_2 \leq a$, thus $x \wedge a_2 \leq a_1$, whence we obtain $x \wedge a_2 \leq a_1 \wedge a_2 = 0$. This proves that $a_2 \in X^{\delta}$.

Observe that a_2 is the greatest element of $X_a^{\delta} = \{y \in X^{\delta} : y \leq a\}$. Indeed, if $y \in X^{\delta}$ then $y \leq a$ implies $y = y \oslash a_1 \leq a \oslash a_1 = a_2$.

It remains to be shown that $a = a_1 \vee a_2$. Since $a_1, a_2 \le a$, we can compute $a_1 \vee a_2$ in the pseudo-MV-algebra $[0, a]$: $a_1 \vee a_2 = a \bigotimes ((a \bigotimes a_1) \wedge (a \bigotimes a_2)) = a \bigotimes ((a \bigotimes a_1) \bigotimes (a_2 \bigotimes a_1)) = a \bigotimes (a_2 \bigotimes a_2) = a$ (a_1)) = $a \bigotimes (a_2 \bigotimes a_2) = a$.

One readily sees that direct factors are closed under existing suprema, and hence a direct factor of an orthogonally *σ* -complete commutative pseudo-BCK-algebra is an orthogonally *σ* -complete commutative pseudo-BCK-algebra again.

Lemma 3.2 *Let A be an orthogonally σ -complete commutative pseudo-BCK-algebra*. *If* X_1 *is a direct factor in* A, and X_2 *is a direct factor in* X_1 , *then* X_2 *is a direct factor in* A. *Likewise, if* X_1, X_2 *are direct factors in A such that* $X_2 \subseteq X_1$ *, then* X_2 *is a direct factor in X*1.

Proof Every $a \in A$ is of the form $a = x_1 \vee y_1$, where $x_1 \in X_1$ and $y_1 \in X_1^{\delta}$. Moreover, *x*₁ ∈ *X*₁ can be written as $x_1 = x_2 \vee y_2$ for some $x_2 \in X_2$ and $y_2 \in X_2^{\delta_1}$, where $X_2^{\delta_1} = \{u \in X_2, u_2 \in X_2\}$ $X_1: u \wedge v = 0$ for all $v \in X_2$ is the polar of X_2 in X_1 . Hence $a = x_2 \vee y_2 \vee y_1$, where $x_2 \in X_2$ and $y_2 \vee y_1 \in X_2^{\delta}$. Indeed, since $y_2 \in X_2^{\delta_1} \subseteq X_2^{\delta}$ and $y_1 \in X_1^{\delta} \subseteq X_2^{\delta}$, we have $z \wedge (y_2 \vee y_1) =$ $(z \land y_2) \lor (z \land y_1) = 0$ for each $z \in X_2$.

For the latter claim, if $a \in X_1$ then $a = x \vee y$ for some $x \in X_2$, $y \in X_2^{\delta}$. Since $y \le a \in X_1$, also $y \in X_1$ and hence $y \in X_1 \cap X_2^{\delta} = X_2^{\delta_1}$ δ_1 .

4 Proof of Theorem [A](#page-1-0)

Lemma 4.1 *Let* $(A, \oslash, \oslash, 0)$ *be an orthogonally σ*-complete commutative pseudo-BCK*algebra and* $\{X_n : n \in \mathbb{N}\}\$ a countable family of direct factors in A so that $X_i \cap X_j = \{0\}$ for *all* $i, j ∈ ℕ, i ≠ j$. *Then*

$$
X_0 := \bigcap_{n \in \mathbb{N}} X_n^{\delta}
$$

is a direct factor in A. *Moreover*,

$$
A \cong X_0 \times \prod_{n \in \mathbb{N}} X_n.
$$

Proof For an arbitrary element $z \in A$ and $n \in \mathbb{N}$, let z_n denote the " X_n -coordinate" of *z* in the direct sum $X_n \oplus X_n^{\delta} = A$, i.e., z_n is the greatest element of X_n below z .

Let *a* ∈ *A*. For every *i*, *j* ∈ \mathbb{N} , *i* \neq *j*, we have $a_i \wedge a_j \in X_i \cap X_j = \{0\}$, thus $a_i \wedge a_j = 0$, which ensures the existence of

$$
b:=\bigvee_{n\in\mathbb{N}}a_n.
$$

Moreover, $b_n = a_n$ for each $n \in \mathbb{N}$. Indeed, since $a \ge a_n$ for all $n \in \mathbb{N}$, it holds $a \ge b$ and so $a_n \geq b_n$ for all *n*. Conversely, from $b \geq a_n$ it follows $b_n \geq a_n$.

Put $c = a \oslash b$. For every $n \in \mathbb{N}$ we have $c_n = a_n \oslash b_n = a_n \oslash a_n = 0$, yielding $c \in \bigcap_{n \in \mathbb{N}} X_n^{\delta} = X_0$. Furthermore, if $x \in X_0$ then $x \wedge b = x \wedge \bigvee_{n \in \mathbb{N}} a_n = \bigvee_{n \in \mathbb{N}} (x \wedge a_n) = 0$ as $x \wedge a_n = 0$ for all *n*, and hence $b \in X_0^{\delta}$. Note that $b \wedge c = 0$, because $b \in X_0^{\delta}$ and $c \in X_0$.

We know that $b, c \le a$. Hence in the pseudo-MV-algebra $[0, a]$ we have $c \oplus_a b =$ $(a \oslash b) \oplus_a b = a \vee b = a$, and from $c \wedge b = 0$ it follows that $a = c \oplus_a b = c \vee b$.

Altogether, every *a* ∈ *A* can be written in the form *a* = *b* ∨ *c*, where *b* ∈ X_0^{δ} and *c* ∈ X_0 , so by Lemma $3.1 X_0$ $3.1 X_0$ is a direct factor in A.

By what we have established before, every $a \in A$ is of the form

$$
a = c \vee \bigvee_{n \in \mathbb{N}} a_n,
$$

where $c \in X_0$ and $a_n \in X_n$ for each $n \in \mathbb{N}$. To see that this expression is unique, suppose that $a = c' \vee \bigvee_{n \in \mathbb{N}} a'_n$ for some $c' \in X_0$ and $a'_n \in X_n$. Since $c, c' \in X_0$ and $\bigvee_{n \in \mathbb{N}} a_n$, $\bigvee_{n \in \mathbb{N}} a'_n \in X_0$ X_0^{δ} , it follows $c' = c$ and $\bigvee_{n \in \mathbb{N}} a'_n = \bigvee_{n \in \mathbb{N}} a_n$, which yields (for every $k \in \mathbb{N}$) $a_k = a_k \wedge a_k$ $\bigvee_{n \in \mathbb{N}} a'_n = \bigvee_{n \in \mathbb{N}} (a_k \wedge a'_n) = a_k \wedge a'_k$ as $a_k \wedge a'_n = 0$ for $k \neq n$. Hence $a_k \leq a'_k$. Analogously, $a'_k \leq a_k$, and so $a'_k = a_k$ for all $k \in \mathbb{N}$.

Now we define $f: X_0 \times \prod_{n \in \mathbb{N}} X_n \to A$ by letting

$$
f(x_n : n \in \mathbb{N}_0) := \bigvee_{n \in \mathbb{N}_0} x_n.
$$

Obviously, *f* is a bijection. For any $(x_n : n \in \mathbb{N}_0)$, $(y_n : n \in \mathbb{N}_0) \in X_0 \times \prod_{n \in \mathbb{N}} X_n$ we have $f(x_n : n \in \mathbb{N}_0) \oslash f(y_n : n \in \mathbb{N}_0) = (\bigvee_{n \in \mathbb{N}_0} x_n) \oslash (\bigvee_{n \in \mathbb{N}_0} y_n) = \bigvee_{n \in \mathbb{N}_0} (x_n \oslash (\bigvee_{k \in \mathbb{N}_0} y_k)) =$ $\bigvee_{n \in \mathbb{N}_0} \bigwedge_{k \in \mathbb{N}_0} (x_n \oslash y_k) = \bigvee_{n \in \mathbb{N}_0} (x_n \oslash y_n) = f(x_n \oslash y_n : n \in \mathbb{N}_0) = f((x_n : n \in \mathbb{N}_0) \oslash (y_n : n \in \mathbb{N}_0)$ *n* ∈ N₀)) since for *n* ≠ *k*, *x_n* ∧ *y_k* = 0 entails *x_n* ⊘ *y_k* = *x_n*. Therefore *f* is an isomorphism. \Box

Lemma 4.2 *Let* $(A, \oslash, \odot, 0)$ *be an orthogonally σ*-*complete commutative pseudo-BCKalgebra, and let* X_1, X_2 *be direct factors with* $X_2 \subseteq X_1$. *If* $A \cong X_2$ *then also* $A \cong X_1$.

Proof Let *h* be an isomorphism of *A* onto *X*2. Define the sequence of deductive systems

$$
X_0 := A
$$
, X_1 , X_2 , $X_3 := h(X_1)$, $X_4 := h(X_2)$, etc.,

i.e., $X_{n+2} = h(X_n)$ for every $n \in \mathbb{N}_0$. It is clear that the restriction $h|_{X_n}$ is an isomorphism of X_n onto X_{n+2} , so

 $A \cong X_2 \cong X_4 \cong \cdots$ and $X_1 \cong X_3 \cong X_5 \cong \cdots$

Hence we may assume $X_0 \supset X_1 \supset X_2 \supset \cdots$ since $X_n = X_{n+1}$ for some $n \in \mathbb{N}_0$ would yield $X_1 \cong A$.

Further, for any $n \in \mathbb{N}_0$, let $X_{n+1}^{\delta_n}$ denote the polar of X_{n+1} in X_n , i.e.,

$$
X_{n+1}^{\delta_n} = \{ x \in X_n : x \wedge y = 0 \text{ for all } y \in X_{n+1} \} = X_n \cap X_{n+1}^{\delta}.
$$

We are going to show that

$$
h(X_{n+1}^{\delta_n}) = X_{n+3}^{\delta_{n+2}}.
$$
\n(4.1)

Let $x \in X_{n+3}^{\delta_{n+2}} = X_{n+2} \cap X_{n+3}^{\delta}$. Then $x = h(x_0)$ for some $x_0 \in X_n$, and for each $y_0 \in X_{n+1}$ we have $h(x_0 \land y_0) = h(x_0) \land h(y_0) = 0$ since $h(y_0) \in X_{n+3}$. Consequently, $x_0 \land y_0 = 0$, which yields $x_0 \in X_{n+1}^{\delta_n}$ and so $x \in h(X_{n+1}^{\delta_n})$. Conversely, let $x \in h(X_{n+1}^{\delta_n})$, i.e., $x = h(x_0)$ for some $x_0 \in X_{n+1}^{\delta_n} = X_n \cap X_{n+1}^{\delta}$. If $y \in X_{n+3}$ then $y = h(y_0)$ for some $y_0 \in X_{n+1}$, thus *x* ∧ *y* = *h*(*x*₀ ∧ *y*₀) = 0 since *x*₀ ∧ *y*₀ = 0. This means *x* ∈ *X*_{*n*+2} ∩ *X*_{*n*⁵_{*n*+3}</sup> = *X*_{*n*⁵_{*n*+3}</sup> which}} settles (4.1).

Next, we prove that

$$
X_n=X_{n+1}\oplus X_{n+1}^{\delta_n},
$$

in other words, X_{n+1} and $X_{n+1}^{\delta_n}$ are direct factors in X_n . By induction on $n \in \mathbb{N}_0$. For $n = 0$ this is just the hypothesis that X_1 is a direct factor in *A*, and for $n = 1$ it follows from this hypothesis by Lemma [3.2](#page-6-0). Let $n \geq 2$ and suppose that the statement holds for all $k < n$. Then X_{n-1} ⊕ $X_{n-1}^{\delta_{n-2}} = X_{n-2}$ and $X_n = h(X_{n-1} \oplus X_{n-1}^{\delta_{n-2}})$. Every $x \in X_n$ is therefore in the form $x = h(y \lor z) = h(y) \lor h(z)$, where $y \in X_{n-1}$ and $z \in X_{n-1}^{\delta_{n-2}}$. Since $h(y) \in X_{n+1}$ and *h*(*z*) ∈ *X*^{$δ_n$}_{*n*+1} by (4.1), it follows that *X_n* = *X_{n+1}* ⊕ *X*^{$δ_n$}_{*n*+1}.

Now, we put

$$
Y_n := X_{n+1}^{\delta_n}.
$$

Since $X_{n+1}^{\delta_n}$ is a direct factor in X_n , it is evident that all Y_n 's are direct factors in *A*. Moreover, for $i \neq j$ we have $Y_i \cap Y_j = \{0\}$. Indeed, if e.g. $i < j$ then $X_i \supset X_j$, $X_{i+1}^{\delta} \subseteq X_{j+1}^{\delta}$ and $X_{i+1} \supseteq X_j$ X_j , whence we obtain $Y_i \cap Y_j = X_i \cap X_{i+1}^{\delta} \cap X_j \cap X_{j+1}^{\delta} = X_j \cap X_{i+1}^{\delta} \subseteq X_{i+1} \cap X_{i+1}^{\delta} = \{0\}.$

Hence, using Lemma [4.1,](#page-6-0)

$$
A \cong Z \times \prod_{n \in \mathbb{N}_0} Y_n,
$$

where $Z = \bigcap_{n \in \mathbb{N}_0} Y_n^{\delta}$. Obviously, for $n \ge 1$, $Y_n \subseteq X_1$ and $Z = Y_0^{\delta} \cap \bigcap_{n \in \mathbb{N}} Y_n^{\delta} = X_1^{\delta \delta} \cap \emptyset$ $\bigcap_{n\in\mathbb{N}} Y_n^{\delta} = X_1 \cap \bigcap_{n\in\mathbb{N}} Y_n^{\delta} = \bigcap_{n\in\mathbb{N}} (X_1 \cap Y_n^{\delta}) = \bigcap_{n\in\mathbb{N}} Y_n^{\delta_1}$, and therefore,

$$
X_1 \cong Z \times \prod_{n \in \mathbb{N}} Y_n,
$$

and since $Y_n \cong Y_{n+2}$ by (4.1), it follows

$$
A \cong Z \times \prod_{n \in \mathbb{N}_0} Y_n \cong Z \times \prod_{n \in \mathbb{N}} Y_n \cong X_1.
$$

We are ready to prove Theorem [A,](#page-1-0) which can be reformulated as follows:

Theorem 4.3 *Let A and B be orthogonally σ -complete commutative pseudo-BCKalgebras*. *If A is isomorphic to a direct factor in B*, *and B is isomorphic to a direct factor in A*, *then* $A \cong B$.

Proof Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be embeddings such that $f(A)$ and $A_1 := g(B)$ are direct factors in *B* and *A*, respectively. It suffices to observe that $A_2 := (f \circ g)(A)$ is a direct factor (in *A*₁ and hence) in *A* satisfying $A_2 \subseteq A_1$ and $A_2 \cong A$, which yields $A \cong A_1 \cong B$ by Lemma 4.2. □ Lemma [4.2.](#page-7-0)

5 Applications

Let *A* be a pseudo-MV-algebra (= bounded commutative pseudo-BCK-algebra). An element $e \in A$ is said to be *boolean* [[4](#page-10-0)] if it has a complement in the underlying lattice of A. In this case, $e^- = e^{\sim}$ is the complement of *e*. This is also equivalent to $e \oplus e = e$. The boolean elements of *A* form a subalgebra that is a boolean algebra in its own right.

Following [\[8](#page-10-0)], we can say that $X \subseteq A$ is a direct factor if and only if there exists a boolean element $e \in A$ such that $X = [0, e]$. (This is also a corollary of our Lemma [3.1.](#page-5-0)) Therefore, by Example [2.2](#page-3-0)(b) and Theorem 4.3 we gain:

Corollary 5.1 [\[10\]](#page-10-0) *Let A,B be orthogonally σ -complete pseudo-MV-algebras such that A* \cong [0, *e*] ⊆ *B for some boolean element e* ∈ *B*, *and B* \cong [0, *f*] ⊆ *A for some boolean element* f ∈ *A*. *Then* $A \cong B$.

This result is due to Jakubík [[10](#page-10-0)] and extends the following MV-algebraic Cantor– Bernstein theorem which was proved by De Simone, Mundici and Navara [\[15\]](#page-10-0) (it suffices to observe that every *σ* -complete MV-algebra is automatically an orthogonally *σ* -complete pseudo-MV-algebra):

Corollary 5.2 [[15](#page-10-0)] *If A and B are two* (*orthogonally*) *σ -complete MV-algebras such that A is isomorphic to* $[0, e] \subseteq B$ *where e is a boolean element in B*, *and B is isomorphic to* $[0, f] \subseteq A$ *for some boolean element f in A*, *then* $A \cong B$.

It should be mentioned that there is another Cantor–Bernstein-like theorem for MV-algebras by Jakubík [[7](#page-10-0)], but as observed in $[15]$ $[15]$ $[15]$ it is incomparable with the above one.

Let us recall that an ℓ -group *G* is called *orthogonally* (or *laterally*) *σ*-*complete* if every pairwise orthogonal set of elements of *G* has a supremum in *G*. It is worth reminding that a convex ℓ -subgroup *X* of *G* is a direct factor if and only if for all $g \in G^+$, $X_g = \{x \in X :$ $0 \leq x \leq g$ } has a greatest element.

Jakubík [[9](#page-10-0)] proved the next theorem which can be easily achieved from Theorem [A:](#page-1-0)

Corollary 5.3 [\[9](#page-10-0)] *Let G,H be orthogonally σ -complete -groups*. *If G is isomorphic to a direct factor in H*, and *H is isomorphic to a direct factor in G*, *then* $G \cong H$.

Proof Let $G \cong G_1$ and $H \cong H_1$, where G_1 and H_1 are direct factors in *H* and *G*, respectively. We may regard the positive cones G^+ and H^+ as orthogonally σ -complete commutative pseudo-BCK-algebras $(G^+, \oslash, \oslash, 0)$ and $(H^+, \oslash, \oslash, 0)$. The sets $G_1^+ = G_1 \cap H^+$ and $H_1^+ = H_1 \cap G^+$ are direct factors in H^+ and G^+ , respectively, and it is plain that $G^+ \cong G_1^+$ and $H^+ \cong H_1^+$. By Theorem [A](#page-1-0) (or 4.3), the pseudo-BCK-algebras G^+ and H^+ are isomorphic, and consequently, the ℓ -groups *G* and *H* are isomophic as well.

References

- 1. Dvurečenskij, A.: Central elements and Cantor–Bernstein's theorem for pseudo-effect algebras. J. Aust. Math. Soc. **74**, 121–143 (2003)
- 2. Dvurečenskij, A., Vetterlein, T.: Algebras in the positive cone of po-groups. Order 19, 127–146 (2002)
- 3. Freytes, H.: An algebraic version of the Cantor–Bernstein–Schröder theorem. Czechoslov. Math. J. **54**, 609–621 (2004)
- 4. Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-Valued Logic **6**, 95–135 (2001)
- 5. Georgescu, G., Iorgulescu, A.: Pseudo-BCK algebras: an extension of BCK algebras. In: Proc. DMTCS'01, Combinatorics, Computability and Logic, London, pp. 97–114 (2001)
- 6. Halaš, R., Kühr, J.: Deductive systems and annihilators of pseudo BCK-algebras (2007, submitted)
- 7. Jakubík, J.: Cantor–Bernstein theorem for MV-algebras. Czechoslov. Math. J. **49**, 517–526 (1999)
- 8. Jakubík, J.: Direct product decompositions of pseudo MV-algebras. Arch. Math. (Brno) **37**, 131–142 (2001)
- 9. Jakubík, J.: On orthogonally *σ* -complete lattice ordered groups. Czechoslov. Math. J. **52**, 881–888 (2002)
- 10. Jakubík, J.: A theorem of Cantor–Bernstein type for orthogonally *σ* -complete pseudo MV-algebras. Tatra Mt. Math. Publ. **22**, 91–103 (2001)
- 11. Jenča, G.: A Cantor–Bernstein type theorem for effect algebras. Algebra Univers. **48**, 399–411 (2002)
- 12. Kühr, J.: Pseudo-BCK-algebras and residuated lattices. Contrib. Gen. Algebra **16**, 139–144 (2005)
- 13. Kühr, J.: Commutative pseudo BCK-algebras. Southeast Asian Bull. Math. (2007, to appear)
- 14. Rach˚unek, J.: A non-commutative generalization of MV-algebras. Czechoslov. Math. J. **52**, 255–273 (2002)
- 15. De Simone, A., Mundici, D., Navara, M.: A Cantor–Bernstein theorem for *σ* -complete MV-algebras. Czechoslov. Math. J. **53**, 437–447 (2003)
- 16. De Simone, A., Navara, M., Pták, P.: On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolinae **42**, 23–30 (2001)