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Abstract We prove that if A and B are orthogonally σ -complete commutative pseudo-
BCK-algebras such that A is isomorphic to a direct factor in B, and also B is isomorphic to
a direct factor in A, then A and B are isomorphic. As a consequence we obtain previously
known results for MV-algebras (by De Simone, Mundici and Navara), pseudo-MV-algebras
(by Jakubík) and lattice-ordered groups (again by Jakubík).
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1 Introduction and the main result

A pseudo-BCK-algebra [5] is a structure (A,�,�,�,0) where (A,�) is a poset with a
least element 0, and �, � are binary operations on A such that, for all x, y, z ∈ A, we have

(z� y)� (z� x) � x � y, (z� y)� (z� x) � x � y, (1.1)

x � (x � y) � y, x � (x � y) � y, (1.2)

x � y iff x � y = 0 iff x � y = 0. (1.3)

We say that a pseudo-BCK-algebra (A,�,�,�,0) is commutative if it satisfies the identi-
ties

x � (x � y) = y � (y � x), x � (x � y) = y � (y � x). (1.4)
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It is not hard to show that the poset (A,�) then is a meet-semilattice in which the infimum
x ∧ y is given by x ∧ y = x � (x � y) = x � (x � y). Further, a commutative pseudo-
BCK-algebra (A,�,�,�,0) is called orthogonally σ -complete if every countable pairwise
orthogonal subset X ⊆ A (i.e., x ∧ y = 0 for all x, y ∈ X, x �= y) has a supremum in A.

In the present paper we prove the following Cantor–Bernstein type theorem:

Theorem A Let A and B be orthogonally σ -complete commutative pseudo-BCK-algebras
and assume that

A ∼= B × C1 and B ∼= A × C2

for some pseudo-BCK-algebras C1,C2. Then A ∼= B .

If (A,∨,∧,′ ,0,1) is a boolean algebra then (A,�,�,�,0), where x � y = x � y :=
x ∧ y ′, is a commutative pseudo-BCK-algebra, and hence Theorem A is a generalization
of the following known result by Sikorski and Tarski: If A and B are σ -complete boolean
algebras such that A ∼= [0, b] ⊆ B and B ∼= [0, a] ⊆ A for some a ∈ A, b ∈ B , then A ∼= B .

Since pseudo-MV-algebras and positive cones of �-groups can be regarded as special
cases of commutative pseudo-BCK-algebras (see Example 2.2), the theorem is applicable to
MV-algebras and pseudo-MV-algebras as well as to �-groups (in Sect. 5 we obtain the main
results from [15], [10] and [9] as easy consequences of Theorem A).

Other Cantor–Bernstein like theorems extending the aforementioned result for boolean
algebras were proved in [16] for orthomodular lattices, in [11] for effect algebras and in [1]
for pseudo-effect algebras. These theorems, however, are incomparable with Theorem A,
because roughly speaking the intersection of orthomodular lattices and (pseudo-)effect al-
gebras with commutative pseudo-BCK-algebras are boolean algebras and (pseudo-)MV-
algebras, respectively. An abstract version for algebras that have an underlying bounded lat-
tice order (satisfying certain additional conditions) can be found in [3]. Likewise this result
is incomparable with Theorem A since commutative pseudo-BCK-algebras in general are
meet-semilattices without upper bound, and bounded commutative pseudo-BCK-algebras
are equivalent to pseudo-MV-algebras (cf. Example 2.2(b)).

2 Pseudo-BCK-Algebras

Pseudo-BCK-algebras were introduced by Georgescu and Iorgulescu [5] and generalize
well-known BCK-algebras in the sense that if the binary operations � and � coincide then
the resulting structure becomes a BCK-algebra. The definition we have used at the beginning
is essentially the original one, but it is easily seen that pseudo-BCK-algebras can be treated
as algebras (A,�,�,0) of type 〈2,2,0〉. Indeed, if (A,�,�,�,0) is pseudo-BCK-algebra
then the algebra (A,�,�,0) satisfies the following identities and quasi-identity:

[(z� y)� (z� x)]� (x � y) = 0, (2.1)

[(z� y)� (z� x)]� (x � y) = 0, (2.2)

x � 0 = x, (2.3)

x � 0 = x, (2.4)

0 � x = 0, (2.5)

x � y = 0 & y � x = 0 ⇒ x = y, (2.6)
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and on the other hand, on every algebra (A,�,�,0) satisfying (2.1—2.6) one can define
a partial order � by setting x � y iff x � y = 0 (which is equivalent to x � y = 0) so that
(A,�,�,�,0) is a pseudo-BCK-algebra.

Accordingly, by a pseudo-BCK-algebra we shall mean an algebra (A,�,�,0) that
fulfills (2.1—2.6). A bounded pseudo-BCK-algebra is an algebra (A,�,�,0,1), where
(A,�,�,0) is a pseudo-BCK-algebra with a greatest element 1.

Since BCK-algebras coincide with those pseudo-BCK-algebras for which � = �, and
BCK-algebras are not closed under homomorphic images, it follows that the class of all
pseudo-BCK-algebras is a proper quasi-variety.

We have already mentioned that every boolean algebra can be made into a bounded
commutative (pseudo-)BCK-algebra. Moreover, it is known that an arbitrary poset (P,�)

with least element 0 becomes a (pseudo-)BCK-algebra if we define x � y = x � y := 0 if
x � y, and x � y = x � y := x otherwise.

In general, pseudo-BCK-algebras arise as subreducts of dually integral dually residuated
partially ordered monoids:

Example 2.1 A dually integral dually residuated partially ordered monoid (po-monoid for
short) is a structure (M,�,�,�,�,0) where (M,�) is a partially ordered set, (M,�,0)

is a monoid whose identity 0 is the least element of (M,�), and

a � b � c iff a � c � b iff b � c � a

for all a, b, c ∈ M . A straightforward verification yields that (M,�,�,0) is a pseudo-
BCK-algebra. Conversely, by [12], every pseudo-BCK-algebra is obtained as a subalgebra
of the reduct (M,�,�,0) of a suitable dually integral dually residuated po-monoid (M,�,

�,�,�,0).

In addition to (1.1—1.3) and (2.1—2.6), pseudo-BCK-algebras satisfy the following eas-
ily derivable properties (see [5]):

x � x = x � x = 0, 0 � x = 0 � x = 0, (2.7)

x � y ⇒ x � z � y � z & x � z � y � z, (2.8)

x � y ⇒ z� y � z� x & z� y � z� x, (2.9)

(x � y)� z = (x � z)� y, (2.10)

x � y � z iff x � z � y, (2.11)

x � y � x, x � y � x, (2.12)

(x � z)� (y � z) � x � y, (x � z)� (y � z) � x � y, (2.13)

x � (x � (x � y)) = x � y, x � (x � (x � y)) = x � y. (2.14)

Moreover, if
∧

i∈I yi exists, then so does
∨

i∈I (x � yi) and

x �

(∧

i∈I

yi

)

=
∨

i∈I

(x � yi), (2.15)

and the same holds for �; in particular, if x ∧ y exists then

x � (x ∧ y) = x � y and x � (x ∧ y) = x � y. (2.16)
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Since Theorem A is concerned exclusively with commutative pseudo-BCK-algebras, we
focus our attention on them. There are two especially relevant examples:

Example 2.2 (a) Let (G,+,−,0,∨,∧) be an �-group and G+ = {x ∈ G : x � 0} its positive
cone. If we put

x � y := (x − y) ∨ 0 and x � y := (−y + x) ∨ 0,

then (G+,�,�,0) is a commutative pseudo-BCK-algebra. (Note that (G+,�,+,�,�,0)

is a dually integral dually residuated po-monoid.) We emphasize that not all commutative
pseudo-BCK-algebras arise in this way as subalgebras of (G+,�,�,0) (see [2]).

(b) A pseudo-MV-algebra (M,�,− ,∼ ,0,1) is a monoid (M,�,0) endowed with a con-
stant 1 and two supplementary unary operations satisfying the equations:

x � 1 = 1 = 1 � x,

1− = 0 = 1∼,

(x−
� y−)∼ = (x∼

� y∼)−,

x � (y � x∼) = y � (x � y∼) = (y−
� x)� y = (x−

� y)� x,

(x−
� y)� x = y � (x � y∼),

x−∼ = x,

where the binary operation � is defined by x � y = (x− � y−)∼. Pseudo-MV-algebras
were established in [4] and independently in [14] as a non-commutative extension of MV-
algebras; indeed, if the monoid (M,�,0) is commutative, then − and ∼ coincide and
(M,�,− ,0,1) is an MV-algebra.

Let (M,�,− ,∼ ,0,1) be a pseudo-MV-algebra and define

x � y := (y � x∼)− and x � y := (x−
� y)∼.

Then (M,�,�,0,1) is a bounded commutative pseudo-BCK-algebra (and (M,�,�,�,

�,0) is a dually integral dually residuated po-monoid, where � denoted the natural order of
M defined by x � y iff x− ⊕ y = 1). By [5], bounded commutative pseudo-BCK-algebras
are even termwise equivalent to pseudo-MV-algebras; the equivalence is given by the stipu-
lation

x � y := 1 � [(1 � x)� y] = 1 � [(1 � y)� x],
x− := 1 � x & x∼ := 1 � x.

Another important observation is that commutative pseudo-BCK-algebras form an equa-
tional class [13]:

Lemma 2.3 An algebra (A,�,�,0) of type 〈2,2,0〉 is a commutative pseudo-BCK-
algebra if and only if it satisfies (2.7) and (2.10) together with the identities

x � (x � y) = y � (y � x) = x � (x � y) = y � (y � x).



216 Int J Theor Phys (2008) 47: 212–222

It is clear by (2.12) that every interval [0, a] of any commutative pseudo-BCK-algebra is
a bounded commutative pseudo-BCK-algebra, hence a pseudo-MV-algebra. More precisely,
if we are given a commutative pseudo-BCK-algebra (A,�,�,0) and 0 < a ∈ A, and define

x �a y := a � [(a � x)� y] = a � [(a � y)� x],
x−a := a � x & x∼a := a � x,

then ([0, a],�a,
−a ,∼a ,0, a) is a pseudo-MV-algebra. Consequently, although (A,�) is a

meet-semilattice that need not be a lattice, the segment ([0, a],�) is a distributive lattice in
which, for all x, y ∈ [0, a], the supremum x ∨a y is expressed by the formulae

x ∨a y = (x∼a ∧ y∼a )−a = a � [(a � x)� (y � x)] = x �a (y � x)

= (x−a ∧ y−a )∼a = a � [(a � x)� (y � x)] = (y � x)�a x.

Lemma 2.4 Let (A,�,�,0) be a commutative pseudo-BCK-algebra. If the suprema indi-
cated on the left-hand side exist, then also the suprema and infima on the right-hand side
exist and the following equalities hold:

(a) x ∧ ∨
i∈I yi = ∨

i∈I (x ∧ yi);

(b) (
∨

i∈I xi)� y = ∨
i∈I (xi � y), and the same for �;

(c) x � (
∨

i∈I yi) = ∧
i∈I (x � yi), and the same for �.

Proof First of all note that (a), (b) and (c) are valid in pseudo-MV-algebras. The idea is to
calculate the respective joins and meets in a suitable pseudo-MV-algebra [0, a], a ∈ A.

(a) Put a = ∨
i∈I yi . Since x ∧a ∈ [0, a] and yi ∈ [0, a] for all i ∈ I , we get x ∧∨

i∈I yi =
(x ∧ a) ∧ ∨

i∈I yi = ∨
i∈I (x ∧ a) ∧ yi = ∨

i∈I x ∧ yi .

(b) With a = ∨
i∈I xi we have (

∨
i∈I xi) � y = (

∨
i∈I xi) � (a ∧ y) = ∨

i∈I (xi � (a ∧
y)) = ∨

i∈I ((xi � a) ∨ (xi � y)) = ∨
i∈I (xi � y) as xi � a = 0.

(c) We can use the interval [0, x] now. Applying the property (a) we get x � (
∨

i∈I yi) =
x � (x ∧ ∨

i∈I yi) = x � (
∨

i∈I (x ∧ yi)) = ∧
i∈I (x � (x ∧ yi)) = ∧

i∈I (x � yi). �

3 Deductive Systems and Direct Factors

Throughout this paragraph we restrict ourselves to commutative pseudo-BCK-algebras; for
more information about deductive systems in general pseudo-BCK-algebras we refer to [6].

Let (A,�,�,0) be a commutative pseudo-BCK-algebra. We call D ⊆ A a deductive
system of A if

(i) 0 ∈ D,
(ii) if a � b ∈ D and b ∈ D then a ∈ D.

The second condition is equivalent to saying that if a � b ∈ D and b ∈ D then a ∈ D.
For every X ⊆ A, there is the smallest deductive system D(X) containing X; namely,
D(∅) = {0}, and

D(X) = {a ∈ A : (· · · (a � x1)� · · ·)� xn = 0 for some xi ∈ X,n ∈ N}
for X �= ∅.
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We use DS(A) to denote the set of all deductive systems of A. When ordered by in-
clusion, DS(A) forms an algebraic distributive lattice in which infima agree with set-
theoretical intersections and, for every {Xi : i ∈ I } ⊆ DS(A), the supremum in DS(A) is∨

i∈I Xi = D(
⋃

i∈I Xi).
The lattice DS(A) is pseudocomplemented; for each X ∈ DS(A),

Xδ = {a ∈ A : a ∧ x = 0 for all x ∈ X}
= {a ∈ A : x � a = x for all x ∈ X}

is the pseudocomplement of X in DS(A). Xδ is called the polar of X.
Furthermore, we say that J ∈ DS(A) is a compatible deductive system, or an ideal of

A if, for all a, b ∈ A, a � b ∈ J if and only if a � b ∈ J . Equivalently, J is an ideal iff
a � (a � x) ∈ J and a � (a � x) ∈ J for all a ∈ A and x ∈ J . The set of all ideals is
denoted by Id(A); again, it is partially ordered by inclusion. The ideals of A correspond
one-one to the congruences on A. That is, if J ∈ Id(A) then the relation ΘJ defined by

(a, b) ∈ ΘJ iff a � b ∈ J and b � a ∈ J

is a congruence on A such that J = 0/ΘJ = {a ∈ A : (a,0) ∈ ΘJ }, and conversely, for any
congruence Φ on A, its kernel J = 0/Φ is an ideal of A with ΘJ = Φ .

Let A be a commutative pseudo-BCK-algebra. It can be easily seen that if ϕ:A → A1 ×
A2 is an isomorphism of A onto the direct product A1 × A2 of commutative pseudo-BCK-
algebras A1 and A2, then both ϕ−1(A1 × {0}) and ϕ−1({0} × A2) are ideals of A. Moreover,
the polar of ϕ−1(A1 × {0}) is precisely ϕ−1({0} × A2), and vice versa.

We shall say that a deductive system X ∈ DS(A) is a direct factor in A if X = ϕ−1(A1 ×
{0}) or X = ϕ−1({0} × A2) for some direct product decomposition ϕ:A → A1 × A2.

In this case, also Xδ is a direct factor and A is isomorphic to the direct product X × Xδ ;
we write A = X �Xδ and say that A is the direct sum of X and Xδ .

We now describe the direct factors in orthogonally σ -complete commutative pseudo-
BCK-algebras:

Lemma 3.1 Let A be an orthogonally σ -complete commutative pseudo-BCK-algebra. For
any X ∈ DS(A), the following are equivalent:

(a) X is a direct factor;
(b) every a ∈ A can be written in the form a = x ∨ y, where x ∈ X and y ∈ Xδ ;
(c) for every a ∈ A, the set Xa = {x ∈ X : x � a} has a greatest element.

Proof (a) ⇒ (b). Let ϕ:A → A1 × A2 be a direct product decomposition of A and assume
that X = ϕ−1(A1 × {0}). Then Xδ = ϕ−1({0} × A2). For every a ∈ A, if ϕ(a) = (a1, a2)

then x = ϕ−1(a1,0) ∈ X and y = ϕ−1(0, a2) ∈ Xδ , hence x ∨ y exists in A (for x, y are
orthogonal) and one readily sees that ϕ(x∨y) = ϕ(x)∨ϕ(y) = (a1,0)∨(0, a2) = (a1, a2) =
ϕ(a), so x ∨ y = a.

(a) ⇒ (c). With the above notation, it is obvious that ϕ−1(a1,0) ∈ Xa . If b ∈ Xa then
(b1,0) = ϕ(b) � ϕ(a) = (a1, a2), which yields b = ϕ−1(b1,0) � ϕ−1(a1,0). Therefore
ϕ−1(a1,0) is the greatest element of Xa = {x ∈ X : x � a}.

(b) ⇒ (a). First we show the uniqueness of the expression a = x ∨ y, where x ∈ X and
y ∈ Xδ . Suppose that a = x ′ ∨y ′ for some x ′ ∈ X, y ′ ∈ Xδ . Then x = x� (x ∧y) = x�y =
(x ∨y)�y = (x ′ ∨y ′)�y = (x ′�y)∨(y ′�y) = (x ′�(x ′ ∧y))∨(y ′�y) = x ′ ∨(y ′�y),
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thus x � x ′. Analogously, y = y ′ ∨ (x ′�x), which along with x � x ′ (i.e. x ′�x = 0) entails
y = y ′ and x = x ′.

Consequently, the map ψ :X×Xδ → A defined by ψ(x, y) = x∨y is a bijection. For any
x, x ′ ∈ X and y, y ′ ∈ Xδ , we have ψ(x, y)�ψ(x ′, y ′) = (x ∨ y)� (x ′ ∨ y ′) = ((x � x ′) ∧
(x � y ′))∨ ((y � x ′)∧ (y � y ′)) = (x ∧ (x � x ′))∨ (y ∧ (y � y ′)) = (x � x ′)∨ (y � y ′) =
ψ((x, y)� (x ′, y ′)), and similarly ψ(x, y)�ψ(x ′, y ′) = ψ((x, y)� (x ′, y ′)). Thus ψ is an
isomorphism. Therefore, ϕ = ψ−1:A → X ×Xδ is a direct product decomposition such that
ϕ−1(X × {0}) = X and ϕ−1({0} × Xδ) = Xδ .

(c) ⇒ (b). Given a ∈ A, let a1 be the greatest element of Xa and put a2 = a � a1. We
have ((a� (a2 � a1))� a1)� a1 = ((a� a1)� (a2 � a1))� a1 = (a2 � (a2 � a1))� a1 =
(a1 ∧a2)�a1 = 0; since a1 ∈ X, it follows that a�(a2�a1) ∈ X. Hence a�(a2�a1) � a1,
because a � (a2 � a1) is less than or equal to a and belongs to X. On the other hand,
a� (a2 �a1) � a�a2 = a� (a�a1) = a ∧a1 = a1, so a� (a2 �a1) = a1. Consequently,
a2 � a1 = (a2 � a1)∧ a = a� (a� (a2 � a1)) = a� a1 = a2 whence a1 ∧ a2 = a2 � (a2 �

a1) = 0.
Now, for any x ∈ X, x ∧ a2 ∈ X and x ∧ a2 � a, thus x ∧ a2 � a1, whence we obtain

x ∧ a2 � a1 ∧ a2 = 0. This proves that a2 ∈ Xδ .
Observe that a2 is the greatest element of Xδ

a = {y ∈ Xδ : y � a}. Indeed, if y ∈ Xδ then
y � a implies y = y � a1 � a � a1 = a2.

It remains to be shown that a = a1 ∨ a2. Since a1, a2 � a, we can compute a1 ∨ a2 in the
pseudo-MV-algebra [0, a]: a1 ∨ a2 = a � ((a � a1) ∧ (a � a2)) = a � ((a � a1) � (a2 �

a1)) = a � (a2 � a2) = a. �

One readily sees that direct factors are closed under existing suprema, and hence a direct
factor of an orthogonally σ -complete commutative pseudo-BCK-algebra is an orthogonally
σ -complete commutative pseudo-BCK-algebra again.

Lemma 3.2 Let A be an orthogonally σ -complete commutative pseudo-BCK-algebra. If
X1 is a direct factor in A, and X2 is a direct factor in X1, then X2 is a direct factor in A.
Likewise, if X1,X2 are direct factors in A such that X2 ⊆ X1, then X2 is a direct factor in
X1.

Proof Every a ∈ A is of the form a = x1 ∨ y1, where x1 ∈ X1 and y1 ∈ Xδ
1. Moreover,

x1 ∈ X1 can be written as x1 = x2 ∨ y2 for some x2 ∈ X2 and y2 ∈ X
δ1
2 , where X

δ1
2 = {u ∈

X1 : u∧v = 0 for all v ∈ X2} is the polar of X2 in X1. Hence a = x2 ∨y2 ∨y1, where x2 ∈ X2

and y2 ∨ y1 ∈ Xδ
2. Indeed, since y2 ∈ X

δ1
2 ⊆ Xδ

2 and y1 ∈ Xδ
1 ⊆ Xδ

2, we have z ∧ (y2 ∨ y1) =
(z ∧ y2) ∨ (z ∧ y1) = 0 for each z ∈ X2.

For the latter claim, if a ∈ X1 then a = x ∨y for some x ∈ X2, y ∈ Xδ
2. Since y � a ∈ X1,

also y ∈ X1 and hence y ∈ X1 ∩ Xδ
2 = X

δ1
2 . �

4 Proof of Theorem A

Lemma 4.1 Let (A,�,�,0) be an orthogonally σ -complete commutative pseudo-BCK-
algebra and {Xn : n ∈ N} a countable family of direct factors in A so that Xi ∩ Xj = {0} for
all i, j ∈ N, i �= j . Then

X0 :=
⋂

n∈N

Xδ
n
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is a direct factor in A. Moreover,

A ∼= X0 ×
∏

n∈N

Xn.

Proof For an arbitrary element z ∈ A and n ∈ N, let zn denote the “Xn-coordinate” of z in
the direct sum Xn �Xδ

n = A, i.e., zn is the greatest element of Xn below z.
Let a ∈ A. For every i, j ∈ N, i �= j , we have ai ∧ aj ∈ Xi ∩ Xj = {0}, thus ai ∧ aj = 0,

which ensures the existence of

b :=
∨

n∈N

an.

Moreover, bn = an for each n ∈ N. Indeed, since a � an for all n ∈ N, it holds a � b and so
an � bn for all n. Conversely, from b � an it follows bn � an.

Put c = a � b. For every n ∈ N we have cn = an � bn = an � an = 0, yielding
c ∈ ⋂

n∈N
Xδ

n = X0. Furthermore, if x ∈ X0 then x ∧ b = x ∧ ∨
n∈N

an = ∨
n∈N

(x ∧ an) = 0
as x ∧ an = 0 for all n, and hence b ∈ Xδ

0. Note that b ∧ c = 0, because b ∈ Xδ
0 and c ∈ X0.

We know that b, c � a. Hence in the pseudo-MV-algebra [0, a] we have c �a b =
(a � b)�a b = a ∨ b = a, and from c ∧ b = 0 it follows that a = c �a b = c ∨ b.

Altogether, every a ∈ A can be written in the form a = b ∨ c, where b ∈ Xδ
0 and c ∈ X0,

so by Lemma 3.1 X0 is a direct factor in A.
By what we have established before, every a ∈ A is of the form

a = c ∨
∨

n∈N

an,

where c ∈ X0 and an ∈ Xn for each n ∈ N. To see that this expression is unique, suppose that
a = c′ ∨ ∨

n∈N
a′

n for some c′ ∈ X0 and a′
n ∈ Xn. Since c, c′ ∈ X0 and

∨
n∈N

an,
∨

n∈N
a′

n ∈
Xδ

0, it follows c′ = c and
∨

n∈N
a′

n = ∨
n∈N

an, which yields (for every k ∈ N) ak = ak ∧
∨

n∈N
a′

n = ∨
n∈N

(ak ∧ a′
n) = ak ∧ a′

k as ak ∧ a′
n = 0 for k �= n. Hence ak � a′

k . Analogously,
a′

k � ak , and so a′
k = ak for all k ∈ N.

Now we define f :X0 × ∏
n∈N

Xn → A by letting

f (xn : n ∈ N0) :=
∨

n∈N0

xn.

Obviously, f is a bijection. For any (xn : n ∈ N0), (yn : n ∈ N0) ∈ X0 × ∏
n∈N

Xn we have
f (xn : n ∈ N0)� f (yn : n ∈ N0) = (

∨
n∈N0

xn)� (
∨

n∈N0
yn) = ∨

n∈N0
(xn � (

∨
k∈N0

yk)) =
∨

n∈N0

∧
k∈N0

(xn � yk) = ∨
n∈N0

(xn � yn) = f (xn � yn : n ∈ N0) = f ((xn : n ∈ N0)� (yn :
n ∈ N0)) since for n �= k, xn ∧yk = 0 entails xn�yk = xn. Therefore f is an isomorphism. �

Lemma 4.2 Let (A,�,�,0) be an orthogonally σ -complete commutative pseudo-BCK-
algebra, and let X1,X2 be direct factors with X2 ⊆ X1. If A ∼= X2 then also A ∼= X1.

Proof Let h be an isomorphism of A onto X2. Define the sequence of deductive systems

X0 := A, X1, X2, X3 := h(X1), X4 := h(X2), etc.,

i.e., Xn+2 = h(Xn) for every n ∈ N0. It is clear that the restriction h�Xn is an isomorphism
of Xn onto Xn+2, so

A ∼= X2
∼= X4

∼= · · · and X1
∼= X3

∼= X5
∼= · · ·



220 Int J Theor Phys (2008) 47: 212–222

Hence we may assume X0 ⊃ X1 ⊃ X2 ⊃ · · · since Xn = Xn+1 for some n ∈ N0 would yield
X1

∼= A.
Further, for any n ∈ N0, let X

δn
n+1 denote the polar of Xn+1 in Xn, i.e.,

X
δn
n+1 = {x ∈ Xn : x ∧ y = 0 for all y ∈ Xn+1} = Xn ∩ Xδ

n+1.

We are going to show that

h(X
δn
n+1) = X

δn+2
n+3 . (4.1)

Let x ∈ X
δn+2
n+3 = Xn+2 ∩Xδ

n+3. Then x = h(x0) for some x0 ∈ Xn, and for each y0 ∈ Xn+1

we have h(x0 ∧ y0) = h(x0) ∧ h(y0) = 0 since h(y0) ∈ Xn+3. Consequently, x0 ∧ y0 = 0,
which yields x0 ∈ X

δn
n+1 and so x ∈ h(X

δn
n+1). Conversely, let x ∈ h(X

δn
n+1), i.e., x = h(x0)

for some x0 ∈ X
δn
n+1 = Xn ∩ Xδ

n+1. If y ∈ Xn+3 then y = h(y0) for some y0 ∈ Xn+1, thus

x ∧ y = h(x0 ∧ y0) = 0 since x0 ∧ y0 = 0. This means x ∈ Xn+2 ∩ Xδ
n+3 = X

δn+2
n+3 which

settles (4.1).
Next, we prove that

Xn = Xn+1 �X
δn
n+1,

in other words, Xn+1 and X
δn
n+1 are direct factors in Xn. By induction on n ∈ N0. For n = 0

this is just the hypothesis that X1 is a direct factor in A, and for n = 1 it follows from this
hypothesis by Lemma 3.2. Let n � 2 and suppose that the statement holds for all k < n.
Then Xn−1 � X

δn−2
n−1 = Xn−2 and Xn = h(Xn−1 � X

δn−2
n−1 ). Every x ∈ Xn is therefore in the

form x = h(y ∨ z) = h(y) ∨ h(z), where y ∈ Xn−1 and z ∈ X
δn−2
n−1 . Since h(y) ∈ Xn+1 and

h(z) ∈ X
δn
n+1 by (4.1), it follows that Xn = Xn+1 �X

δn
n+1.

Now, we put

Yn := X
δn
n+1.

Since X
δn
n+1 is a direct factor in Xn, it is evident that all Yn’s are direct factors in A. Moreover,

for i �= j we have Yi ∩Yj = {0}. Indeed, if e.g. i < j then Xi ⊃ Xj , Xδ
i+1 ⊆ Xδ

j+1 and Xi+1 ⊇
Xj , whence we obtain Yi ∩ Yj = Xi ∩ Xδ

i+1 ∩ Xj ∩ Xδ
j+1 = Xj ∩ Xδ

i+1 ⊆ Xi+1 ∩ Xδ
i+1 = {0}.

Hence, using Lemma 4.1,

A ∼= Z ×
∏

n∈N0

Yn,

where Z = ⋂
n∈N0

Y δ
n . Obviously, for n � 1, Yn ⊆ X1 and Z = Y δ

0 ∩ ⋂
n∈N

Y δ
n = Xδδ

1 ∩
⋂

n∈N
Y δ

n = X1 ∩ ⋂
n∈N

Y δ
n = ⋂

n∈N
(X1 ∩ Y δ

n ) = ⋂
n∈N

Y
δ1
n , and therefore,

X1
∼= Z ×

∏

n∈N

Yn,

and since Yn
∼= Yn+2 by (4.1), it follows

A ∼= Z ×
∏

n∈N0

Yn
∼= Z ×

∏

n∈N

Yn
∼= X1.

�

We are ready to prove Theorem A, which can be reformulated as follows:
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Theorem 4.3 Let A and B be orthogonally σ -complete commutative pseudo-BCK-
algebras. If A is isomorphic to a direct factor in B , and B is isomorphic to a direct factor
in A, then A ∼= B .

Proof Let f :A → B and g:B → A be embeddings such that f (A) and A1 := g(B) are
direct factors in B and A, respectively. It suffices to observe that A2 := (f ◦g)(A) is a direct
factor (in A1 and hence) in A satisfying A2 ⊆ A1 and A2

∼= A, which yields A ∼= A1
∼= B by

Lemma 4.2. �

5 Applications

Let A be a pseudo-MV-algebra (= bounded commutative pseudo-BCK-algebra). An ele-
ment e ∈ A is said to be boolean [4] if it has a complement in the underlying lattice of A. In
this case, e− = e∼ is the complement of e. This is also equivalent to e� e = e. The boolean
elements of A form a subalgebra that is a boolean algebra in its own right.

Following [8], we can say that X ⊆ A is a direct factor if and only if there exists a boolean
element e ∈ A such that X = [0, e]. (This is also a corollary of our Lemma 3.1.) Therefore,
by Example 2.2(b) and Theorem 4.3 we gain:

Corollary 5.1 [10] Let A,B be orthogonally σ -complete pseudo-MV-algebras such that
A ∼= [0, e] ⊆ B for some boolean element e ∈ B , and B ∼= [0, f ] ⊆ A for some boolean
element f ∈ A. Then A ∼= B .

This result is due to Jakubík [10] and extends the following MV-algebraic Cantor–
Bernstein theorem which was proved by De Simone, Mundici and Navara [15] (it suffices
to observe that every σ -complete MV-algebra is automatically an orthogonally σ -complete
pseudo-MV-algebra):

Corollary 5.2 [15] If A and B are two (orthogonally) σ -complete MV-algebras such that
A is isomorphic to [0, e] ⊆ B where e is a boolean element in B , and B is isomorphic to
[0, f ] ⊆ A for some boolean element f in A, then A ∼= B .

It should be mentioned that there is another Cantor–Bernstein-like theorem for MV-
algebras by Jakubík [7], but as observed in [15] it is incomparable with the above one.

Let us recall that an �-group G is called orthogonally (or laterally) σ -complete if every
pairwise orthogonal set of elements of G has a supremum in G. It is worth reminding that
a convex �-subgroup X of G is a direct factor if and only if for all g ∈ G+, Xg = {x ∈ X :
0 � x � g} has a greatest element.

Jakubík [9] proved the next theorem which can be easily achieved from Theorem A:

Corollary 5.3 [9] Let G,H be orthogonally σ -complete �-groups. If G is isomorphic to a
direct factor in H , and H is isomorphic to a direct factor in G, then G ∼= H .

Proof Let G ∼= G1 and H ∼= H1, where G1 and H1 are direct factors in H and G, respec-
tively. We may regard the positive cones G+ and H+ as orthogonally σ -complete commuta-
tive pseudo-BCK-algebras (G+,�,�,0) and (H+,�,�,0). The sets G+

1 = G1 ∩H+ and
H+

1 = H1 ∩ G+ are direct factors in H+ and G+, respectively, and it is plain that G+ ∼= G+
1

and H+ ∼= H+
1 . By Theorem A (or 4.3), the pseudo-BCK-algebras G+ and H+ are isomor-

phic, and consequently, the �-groups G and H are isomophic as well. �
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